Jean-François Agassant Pierre Avenas Jean-Philippe Sergent Bruno Vergnes Michel Vincent

Mise en forme des polymères

Approche thermomécanique de la plasturgie

Lavoisier

Mise en forme des polymères

Approche thermomécanique de la plasturgie 4^e édition

Jean-François Agassant
Pierre Avenas
Jean-Philippe Sergent
Bruno Vergnes
Michel Vincent

www.editions.lavoisier.fr

Table des matières

Table des matières
Préface
Chapitre 1
Rappels de mécanique des milieux continus
1. Déformation et vitesse de déformation91.1. Tenseur des déformations91.2. Tenseur des vitesses de déformation131.3. Équation de continuité141.4. Exercices15
2. Contraintes et équilibre des forces.212.1. Tenseur des contraintes.212.2. Équilibre dynamique.25
2.3. Exercices
3.2. Cas de l'incompressibilité

T

Annexe 1 : Formulaire	
Chapitre 2	
Comportement rhéologique des polymères fondus	
1. Viscosité : les équations de l'écoulement newtonien 1.1. Expériences de base du comportement newtonien 1.2. Généralisation à trois dimensions 1.3. Ordres de grandeur des forces mises en jeu 1.4. Équations de Navier-Stokes. 1.5. Exercices 2. Comportement pseudo-plastique (ou rhéofluidifiant) 2.1. Description phénoménologique. 2.2. Lois de comportement à une dimension. 2.3. Explication physique de la pseudo-plasticité des polymères. 2.4. Lois de comportement à trois dimensions. 2.5. Application de la loi puissance à des écoulements simples 2.6. Exercices sur le comportement en loi puissance.	39 41 42 44 45 53 55 56 .57 .58
3.1. Comportement rhéologique des suspensions 3.2. Comportement de fluide à seuil 3.3. Exercice : écoulement de Poiseuille d'un fluide à seuil dans un tube 4. Comportement viscoélastique 4.1. Phénomènes physiques 4.2. Viscoélasticité linéaire et modèle de Maxwell 4.3. Différence de contraintes normales en cisaillement simple. 4.4. Interprétation du gonflement en sortie de filière 4.5. Modèle de Maxwell convecté. 4.6. Nombres adimensionnels viscoélastiques 4.7 Quelques interprétations physiques du comportement viscoélastique	.66 .74 .76 .77 .77 .81 .86 .89 .91
des polymères à l'état fondu	.97 100
5. Mesure du comportement rhéologique des polymères fondus 5.1. Rhéomètre capillaire, mesures de viscosité 5.2. Rhéomètre filière plate 5.3. Le problème du glissement à la paroi 5.4. Rhéomètre cône-plan 5.5. Rhéomètre plan-plan parallèle 5.6. Rhéométrie élongationnelle 5.7. Notions de rhéo-optique 5.8. Perspectives	113 124 126 128 136 137 142
Annexe 1 : Physique de la viscosité	149

Annexe 2 : Une approche de la viscoélasticité : le modèle de l'haltère	
élastique1	
Annexe 3 : Dérivation particulaire et dérivation convective	
Annexe 4 : Correction de Rabinowitsch	
Annexe 5 : Écoulement d'un fluide viscoélastique en géométrie cône-plan 17	72
Annexe 6 : Formulaire pour les principaux écoulements simples	77
Chapitre 3	
Thermique et échanges de chaleur dans les procédés	
	٥-
1. Notions de base de la thermique	
1.2. Expression du taux de chaleur reçu par le système	00 06
1.3. Expression de la puissance des efforts intérieurs	
1.4. Équation de l'énergie	
1.5. Expression de l'énergie interne-équation de la chaleur	
1.6. Conditions aux limites	
1.7. Résolution de l'équation de la chaleur	97
2. Problèmes de refroidissement ou de chauffage (dans un moule, dans l'air,	
dans l'eau)19	
2.1. Problèmes posés	
2.2. Équation de la chaleur	
2.4. Température d'interface	
2.5. Refroidissement (échauffement) d'une plaque	02 06
3. Thermique dans les écoulements de polymères	
3.1. Importance de la puissance dissipée : le nombre de Brinkman	
3.2. Notion de régime thermique	
3.3. Équations du problème	
3.4. Régime d'équilibre	16
3.5. Régime adiabatique	
3.6. Régime transitoire dans le cas newtonien	
3.7. Régime transitoire avec un fluide en loi puissance	
3.8. Comparaison avec une solution exacte	
3.9. Application à d'autres géométries d'écoulement	
3.11. Conclusion	
Annexe 1 : Échanges de chaleur par convection	
Annexe 2 : Échanges de chaleur par rayonnement	
Annexe 3 : Expression de l'énergie interne pour les matériaux compressibles	
Affice 3. Expression de l'energie interne pour les materiaux compressibles25	5/
Chapitre 4	
Méthodes d'approximation et méthodes de calcul	
1. Équations d'un problème de mise en forme des polymères	61
2. Approximations concernant le choix de la loi de comportement	
rhéologique	63

19

Tá

3. Choix des conditions aux limites	55 56 56 57
4. Méthodes d'approximation	57 58 75 76
5 Mécanismes de mise en pression des polymères fondus : les patins	
hydrodynamiques	52 82
5.2. Analyse qualitative de quelques patins hydrodynamiques	83
5.3. Analyse du mécanisme de mise en pression créé	
par un rétrécissement brusque (patin de Rayleigh)	85
5.4. Calcul de l'écoulement dans un patin hydrodynamique d'entrefer variable : équation de Reynolds	86
5.5. Exercice: le patin de Reynolds	87
6. Méthodes de calcul	88
6.1. Méthodes de calcul et type d'écoulement	80
(ou incrémentale)	91
6.3 Résolution des équations de Hele-Shaw2	.92
6.4 Résolution des écoulements visqueux 2D et 3D par la méthode des éléments finis	96
6.5. Calcul des écoulements viscoélastiques isothermes	301
Annexe 1 · Analyse des approximations de la lubrification	
hydrodynamique	104
Chapitre 5	
Extrusion monovis et écoulements en filière	
1. Extrusion monovis	313
1.1. Description géométrique et cinématique	313
1.2. Zone d'alimentation	320 332
1.3. Zone de mise en pression	350
1.5. Modèle d'ensemble de l'extrusion monovis	372
1.6. Exercices	378
2. Filières d'extrusion	390 200
2.2. Description des géométries rencontrées 2.3. Rappels sur les hypothèses et les méthodes de calcul	394
2.4. Exemples de résultats	394
2.5. Conclusion	415

2.6. Exercices
3.2. Étude de l'écoulement stationnaire de deux fluides visqueux entre deux plaques parallèles
Annexe 1 : Calcul de la vitesse d'avancée du solide en extrusion monovis
Chapitre 6
Extrusion bivis et applications
1. Description générale du procédé d'extrusion bivis.4451.1. Différents types d'extrudeuses bivis.4451.2. Différents types d'écoulement.4461.3. Spécificités de l'extrusion bivis.4481.4. Géométrie de la vis et du fourreau.449
1.5. Approximations classiques
2. Convoyage solide et fusion
3. Écoulement à l'état fondu.4633.1. Éléments de vis à pas direct ou inverse.4643.2. Éléments de mélange.4734. Modèle d'ensemble de l'extrusion bivis.482
4.1. Description générale
5. Application à la réalisation de mélanges de polymères
6. Application aux opérations de compoundage.5016.1. Différents types de mélange.5016.2 Mélange distributif.502
6.3. Mélange dispersif : application à la réalisation de nanocomposites 505 7. Application à l'extrusion réactive
9. Conclusion

Tab

1. (

3.1

4. 1

5.

6.

Ar

Ar

Ar

3. (Chapitre 7 Injection An mé 2.2. Principales hypothèses et équations du problème.............538 2.4. Modèles de type « couche mince » ou modèles de Hele-Shaw......552 2. F 3.3. Données physiques pour les calculs de compactage/maintien 565 5.1. Injection assistée par gaz (IAG)579 5.2. Injection assistée par eau (IAE)581 5.3. Injection multimatière582 Chapitre 8 Calandrage 2.5. Modèle newtonien isotherme reposant sur les approximations de la

3. Calandrage de finition	625
Annexe 1 : Calcul bidimensionnel de l'écoulement dans le bourrelet par méthode d'éléments finis.	une
	050
Chapitre 9	
Procédés comportant un étirage	
1. Généralité	635
2. Filage textile	635
2.1. Différentes situations de filage textile	
2.2. Étirage d'un fluide newtonien isotherme	
2.3 Étirage d'un fluide viscoélastique isotherme	
2.4. Étirage d'un fluide visqueux dans des conditions non-isothermes	avec
prise en compte des forces de masse et d'inertie	
2.5. Vers un modèle plus général du filage textile	
3. Notions de biétirage	
3.2. Notion de biétirage d'une éprouvette fluide newtonienne / .	
4. Procédés d'extrusion de film à plat	
4.1. Présentation	
4.2. Différentes approches cinématiques	
4.3. Modèle 1D newtonien	661
4.4. Modèle membrane 1D	
4.5. Modèles membrane 2D	
4.6. Conclusion	674
4.7. Exercices	674
5. Procédé de soufflage de gaine	
5.1. Description du procédé	677
5.2. Géométrie de la bulle	680
5.3. Équations du soufflage de gaine	681
5.4. Modèle newtonien non-isotherme	686
5.5. Modèle viscoélastique non isotherme	
5.7. Conclusion	
6. Fabrication de corps creux	
6.1. Différents procédés de soufflage	
6.2. Procédé d'extrusion-soufflage	
6.3. Procédé d'injection-soufflage-biétirage	
6.4. Conclusion	
6.5. Exercices	
Annexe 1 : Résolution des équations du cast-film isotherme	
Annexe 2 : Refroidissement des films dans l'air ou dans l'eau	
Annexe 3 : Résolution des équations du soufflage de gaine (André, 1999	

m

de ci m

Chapitre 10

Instabilités d'écoulement

7/10-71	10
Instabilités d'extrusion	52 31 92
2. Instabilités de coextrusion	93 97 04
3. Défauts du procédé de calandrage	05 07 08 310
4. Instabilités d'étirage 4.1. Description des instabilités d'étirage 4.2. Modélisation de l'instabilité en filage textile 4.3. Modélisation de l'instabilité en étirage de film à plat 4.4. Modélisation des instabilités en soufflage de gaine 5. Conclusion	319 324 328
Index	339

Mise en forme des polymères

Approche thermomécanique de la plasturgie

L'ingénierie des polymères n'est pas chose aisée : technique en constante évolution, elle fait souvent appel à des concepts et des procédés complexes. Mise en forme des polymères a ainsi pour vocation d'en expliquer les éléments essentiels : compréhension des procédés, ordres de grandeur, bases pour l'utilisation des logiciels de conception...

Les notions physiques nécessaires telles que la mécanique des milieux continus, les comportements rhéologiques et leurs méthodes de mesure, la thermique et ses applications aux problèmes de chauffage-refroidissement ainsi que ses implications dans les écoulements sont analysées en détail dans les premiers chapitres. Une fois ces connaissances acquises et maîtrisées, sont abordés les différents procédés que sont l'extrusion monovis et les écoulements en filières, l'extrusion bivis et ses applications, l'injection, le calandrage et les procédés comportant un étirage.

De nombreux exercices et leurs solutions sont proposés tout au long de l'ouvrage afin de permettre au lecteur de se familiariser avec les notions présentées.

Largement revue et augmentée et abondamment illustrée, cette nouvelle édition constitue un ouvrage de référence indispensable pour maîtriser l'art de la plasturgie.

Pratique et didactique, *Mise en forme des polymères* s'adresse aux ingénieurs et techniciens de la profession, ainsi qu'aux étudiants de 2^e et 3^e cycles en sciences des polymères et en plasturgie.

Les auteurs de cet ouvrage appartiennent – ou ont appartenu – au Centre de mise en forme des matériaux (CEMEF) de l'École des Mines de Paris (aujourd'hui MINES ParisTech).

Jean-François Agassant est professeur et responsable du département « Mécanique et matériaux » de MINES ParisTech.

Pierre Avenas a dirigé le CEMEF lors de son implantation à Sophia-Antipolis et fut, par la suite, en charge de la R&D chimie du groupe Total (jusqu'en 2004).

Jean-Philippe Sergent, après sa thèse au CEMEF, a effectué la majeure partie de sa carrière dans le groupe Aliaxis, un leader mondial de la plasturgie.

Bruno Vergnes est directeur de recherche à MINES ParisTech et coordinateur du pôle « Polymères et composites » au CEMEF.

Michel Vincent est directeur de recherches au CNRS ; ses travaux au CEMEF concernent plus spécialement l'injection et les composites.

