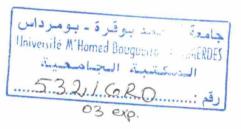
SESAME DE PHYSIQUE

MECANIQUE DES FLUIDES

Cours, exercices et problèmes corrigés


Classes préparatoires – 1er cycle universitaire

Christian GROSSETÊTE

SÉSAME DE PHYSIQUE

Mécanique des fluides

Christian GROSSETETE

Professeur agrégé de Sciences Physiques en classe de Mathématiques Spéciales au lycée Michel Montaigne à Bordeaux Ancien élève de l'E.N.S. de Saint-Cloud

جامعة أمحمد بوقرة - بومرداس Université M'hamed Bougara - Boumerdes الهكتبة الجامعية رقم الجرد...... \$2.2.5 ممرداس

2.2.5. Dérivée p de Reynolds

2.3. FLUX DE 2.3.1. Expressic 2.3.2. Flux de n 2.3.3. Autre for

2.4. ÉCOULEI 2.4.1. Écouleme

TABLE DES MATIÈRES

CHAPITRE I : STATIQUE DES FLUIDES	7	2.4.2. Bilan de 1
	_	2.4.3. Bilan de (
1.1. FLUIDE EN ÉQUILIBRE	7	2.4.4. Bilan d'ér
1.1.1. Modèle du fluide continu	7	The section of
1.1.2. Forces s'exerçant sur un élément de fluide, champ de pression	7	CHAPITRE
1.1.3. Variables intensives caractérisant un élément de fluide	9	3.1. ÉQUATIC
1.1.4. Équivalence des forces de pression	10	3.1.1. Accélérat
1.2. ÉLÉMENTS DE STATIQUE DES FLUIDES	11	3.1.2. Pseudo-v
1.2.1. Fluide au repos dans un référentiel galiléen ou non	11	3.1.3. Écouleme
1.2.2. Fluide au repos dans un référentiel terrestre	12	3.1.4. Équation
1.2.3. Fluide incompressible au repos dans un champ de pesanteur	13	3.1.5. Équation
1.2.4. Théorème d'Archimède	14	3.2. RELATIO
CHAPITRE II : DESCRIPTION EULÉRIENNE DE L'ÉCOULEMENT D'UN FLUIDE PARFAIT	17	3.2.1. Écouleme théorème de Bé
2.1. GRANDEURS INTENSIVES	17	3.2.2. Écouleme incompressible
2.1.1. Description eulérienne du mouvement d'un fluide	17	3.2.3. Écouleme fluide parfait in
2.1.2. Grandeurs intensives caractérisant une particule de fluide, champ des vitesses	18	3.3. ÉCOULEI
2.1.3. Lignes et tubes de courant	18	3.3.1. Modèle d
2.1.4. Dérivée particulaire d'une grandeur intensive	19	3.3.2. Écoulem
2.2. GRANDEURS EXTENSIVES	20	3.3.3. Écoulem
2.2.1. Grandeurs extensives caractérisant une particule de fluide	20	3.3.4. Écouleme
2.2.2. Description eulérienne et volume de contrôle, description lagrangienne et volume matériel	21	CHAPITRE
2.2.3. Vitesse de dilatation volumique relative, divergence du champ	22	DANS LES I
des vitesses	LL	4.1. ÉQUATIO
2.2.4. Dérivée particulaire d'une grandeur extensive scalaire, formule de Reynolds	23	4.1.1. Modèle d

5

2.2.5. Dérivée particulaire d'une grandeur extensive vectorielle, formule	25
de Reynolds	
2.3. FLUX DE MASSE ET CONSERVATION	25
2.3.1. Expression intégrale et locale de la conservation de la masse	25
2.3.2. Flux de masse, débit-masse	26
2.3.3. Autre formulation de la dérivée particulaire d'une grandeur extensive	27
2.4. ÉCOULEMENT STATIONNAIRE	27
2.4.1. Écoulement stationnaire d'un fluide parfait	27
2.4.2. Bilan de masse, conservation du débit-masse	28
2.4.3. Bilan de quantité de mouvement : théorème d'Euler	29
2.4.4. Bilan d'énergie : théorème de Bernoulli	31
CHAPITRE III : DYNAMIQUE DES FLUIDES PARFAITS	35
3.1. ÉQUATION D'EULER	35
3.1.1. Accélération particulaire d'une particule de fluide	35
3.1.2. Pseudo-vecteur tourbillon, vorticité, lignes de vortex	36
3.1.3. Écoulement irrotationnel, potentiel des vitesses	37
3.1.4. Équation d'Euler pour un fluide parfait	38
3.1.5. Équation au pseudo-vecteur tourbillon	40
3.2. RELATIONS DE BERNOULLI	40
3.2.1. Écoulement stationnaire d'un fluide parfait compressible ou non : théorème de Bernoulli	40
3.2.2. Écoulement stationnaire et irrotationnel d'un fluide parfait incompressible : théorème de Bernoulli étendu	42
3.2.3. Écoulement non stationnaire et irrotationnel d'un fluide parfait incompressible : théorème de Bernoulli généralisé	43
3.3, ÉCOULEMENT D'UN FLUIDE INCOMPRESSIBLE	44
3.3.1. Modèle du fluide parfait incompressible	44
3.3.2. Écoulement irrotationnel d'un fluide parfait incompressible	45
3.3.3. Écoulement plan irrotationnel d'un fluide parfait incompressible	46
3.3.4. Écoulements plans élémentaires	48
CHAPITRE IV: PROPAGATION D'ONDES SONORES DANS LES FLUIDES	53
4.1. ÉQUATION DE PROPAGATION	53
4.1.1. Modèle d'étude, approximation de l'acoustique linéaire	.53

4.1.2. Équations régissant l'écoulement	54
4.1.3. Équation de propagation	55
4.1.4. Formule de Laplace	55
4.2. PROPAGATION DU SON PAR ONDES PLANES	56
4.2.1. Propagation d'une onde plane longitudinale dans un fluide	56
4.2.2. Bilan d'énergie, énergie acoustique volumique	58
ANNEXE : FORMULAIRE SUR LES OPÉRATEURS	61
Transformation d'intégrales	61
Formulaire relatif aux opérateurs	62
• Expression des opérateurs dans différents systèmes de coordonnées	62
EXERCICES ET PROBLÈMES RÉSOLUS	65
• N°1 : Fluide entraîné dans un mouvement de rotation uniforme	65
• N°2 : Champ de pression dans une étoile sphérique homogène	66
• N°3 : Equilibre de l'atmosphère, formation d'un nuage	68
 N°4: Forces de pression s'exerçant sur la porte d'une écluse 	72
 N°5 : Stabilité d'un navire, effet de carène liquide 	74
• N°6 : Oscillations d'un fluide parfait dans un tube en U	80
• N°7 : Tourniquet hydraulique	81
• N°8 : De la relation de Bernoulli	84
• N°9 : Tube de Pitot	88
 N°10 : Vidange d'un réservoir, la clepsydre 	90
• N°11 : Turbine hydraulique	94
• N°12 : Rendement d'une hélice	98
• N°13 : Implosion d'une bulle	102
 N°14: Force s'exerçant sur un solide dans un écoulement plan 	106
• N°15 : Tourbillon de Rankine	118
• N°16 : Phénomène de mascaret	123
• N°17 : Houle en eau profonde	129
• N°18 : Etude d'une tuyère	136
• N°19 : Propagation du son par ondes planes	145
• N°20 : Onde de choc dans un fluide parfait compressible	153

1.1. FLUI

1.1.1. Modèl

En méc point de vue Dans cette d déformable élément mac différentiel (très grand no ou molécule 10 10 molécu qu'aux va microscopiq élémentaire.

Cette n ment macro molécules d suffisammen temps de se fluide com introduire er et l'entropia

1.1.2. Force

Pour fa amené à di d'action :

• forces d'i à l'élément o magnétique de volume o par l'élémen

SESAME DE PHYSIQUE

- Chaque fascicule de cette collection s'adresse aux étudiants des classes préparatoires aux grandes écoles scientifiques ainsi qu'à ceux du premier cycle universitaire. Il comprend, sur un sujet bien délimité, une partie cours ainsi que des exercices et problèmes corrigés.
- Le cours est traité en profondeur, d'une manière concise et structurée. Facile à consulter, il permet le retour toujours nécessaire à un point particulier.
- Les exercices et problèmes corrigés ont été choisis tant pour leur intérêt que pour leur diversité. En un nombre de pages volontairement restreint, tous les sujets classiques ont été abordés, sans redondance. Les solutions proposées, très détaillées, devraient permettre à l'étudiant d'acquérir, en peu de temps, la maîtrise nécessaire des concepts utilisés.